最新文�? 转载 : C++中常用的四种类型转换方式:static_cast、const_cast、dynamic_cast 和 reinterpret_cast 原创 : GB 9706.1-2020新标准新法规下载与讨论 原创 : 《CPU设计实战》——学习之路(一) 原创 : 不同方法构建PetaLinux系统 原创 : 无损检测技术之医用超声基础
原创 : FPGA高端项目:图像采集+UltraScale GTH + PCIE,aurora 8b/10b编解码+PCIE视频传输,提供工程源码和QT上位机源码和技术支持 历史版本:
上次修改时间:

引用自

原创 : FPGA高端项目:图像采集+UltraScale GTH + PCIE,aurora 8b/10b编解码+PCIE视频传输,提供工程源码和QT上位机源码和技术支持

FPGA高端项目:图像采集+UltraScale GTH + PCIE,aurora 8b/10b编解码+PCIE视频传输,提供工程源码和QT上位机源码和技术支持

目录

1、前言

没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。UltraScale GTH 适用于Xilinx UltraScale系列的FPGA上,包括Virtex UltraScale、Kintex UltraScale、Zynq® UltraScale等器件,在UltraScale系列之下只有GTH,而UltraScale GTH相比于GTH,线速率更高,支持协议类型更多,功耗更低,带宽更高。。。

本文使用Xilinx的Kirtex7-UltraScale-xcku060-ffva1156-2-i FPGA 的UltraScale GTH+PCIE,aurora 8b/10b编解码,PCIE视频传输实验,视频源有两种,分别对应开发者手里的开发板有没有HDMI输入接口的情况,一种是使用笔记本电脑模拟HDMI视频,ADV7611芯片将输入的HDMI视频解码为GRB后供FPGA使用;如果你的开发板有没有HDMI输入接口,或者你的开发板HDMI输入解码芯片不是ADV7611,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用HDMI输入作为视频源;FPGA采集到谁视频后,首先会送入数据组包模块对视频进行打包,并加上以字符BC为基础的控制帧头和帧尾以及其他标志符;然后调用Xilinx官方的UltraScale GTH IP核,并配置为8b/10b编解码模式,线速率配置为5G;然后通过板载的SFP光口将8b/10b编码后的视频发送出去;板载的SFP光口再接收8b/10b编码后的视频;UltraScale GTH再做8b/10b解码处理;然后将数据送入数据对齐模块进行对齐处理;然后将数据送入数据解包模块去掉帧头帧尾并恢复视频时序;然后用我常用的FDMA图像缓存架构,将图像写入DDR4中做三帧缓存;再调用Xilinx官方的XDMA,从DDR4中将视频读出,通过PCIE总线发送给PC端;PC端运行QT上位机,以中断方式接收FPGA发来的图像并显示出来;

提供1套vivado2022.2版本的FPGA工程源码,提供一套Windows版本的QT上位机源码,提供经过修改后适用于中断模式的XDMA驱动及其源码;

本博客详细描述了Xilinx的Kirtex7-UltraScale-xcku060-ffva1156-2-i FPGA 的UltraScale GTH资源做板对板视频传输实验的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网以及其他开源免费获取渠道等等),若大佬们觉得有所冒犯,请私信批评教育;部分模块源码转载自上述网络,版权归原作者所有,如有侵权请联系我们删除;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

我已有的PCIE方案

我的主页有PCIE通信专栏,该专栏基于XDMA的轮询模式实现与QT上位机的数据交互,既有基于RIFFA实现的PCIE方案,也有基于XDMA实现的PCIE方案;既有简单的数据交互、测速,也有应用级别的图像采集传输,以下是专栏地址:
点击直接前往
此外,我的主页有中断模式的PCIE通信专栏,该专栏基于XDMA的中断模式实现与QT上位机的数据交互,以下是专栏地址:点击直接前往

3、详细设计方案

本文使用Xilinx的Kirtex7-UltraScale-xcku060-ffva1156-2-i FPGA 的UltraScale GTH+PCIE,aurora 8b/10b编解码,PCIE视频传输实验,视频源有两种,分别对应开发者手里的开发板有没有HDMI输入接口的情况,一种是使用笔记本电脑模拟HDMI视频,ADV7611芯片将输入的HDMI视频解码为GRB后供FPGA使用;如果你的开发板有没有HDMI输入接口,或者你的开发板HDMI输入解码芯片不是ADV7611,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用HDMI输入作为视频源;FPGA采集到谁视频后,首先会送入数据组包模块对视频进行打包,并加上以字符BC为基础的控制帧头和帧尾以及其他标志符;然后调用Xilinx官方的UltraScale GTH IP核,并配置为8b/10b编解码模式,线速率配置为5G;然后通过板载的SFP光口将8b/10b编码后的视频发送出去;板载的SFP光口再接收8b/10b编码后的视频;UltraScale GTH再做8b/10b解码处理;然后将数据送入数据对齐模块进行对齐处理;然后将数据送入数据解包模块去掉帧头帧尾并恢复视频时序;然后用我常用的FDMA图像缓存架构,将图像写入DDR4中做三帧缓存;再调用Xilinx官方的XDMA,从DDR4中将视频读出,通过PCIE总线发送给PC端;PC端运行QT上位机,以中断方式接收FPGA发来的图像并显示出来;

设计框图

工程详细设计方案框图如下:

框图解释:箭头表示数据流向,箭头内文字表示数据格式,箭头外数字表示数据流向的步骤;

视频源选择

视频源有两种,分别对应开发者手里的开发板有没有HDMI输入接口的情况,一种是使用笔记本电脑模拟HDMI视频,ADV7611芯片将输入的HDMI视频解码为GRB后供FPGA使用;如果你的开发板有没有HDMI输入接口,或者你的开发板HDMI输入解码芯片不是ADV7611,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用HDMI输入作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:

选择逻辑代码部分如下:

选择逻辑如下:
当(注释) define COLOR_TEST时,输入源视频是HDMI输入;
当(不注释) define COLOR_TEST时,输入源视频是动态彩条;

ADV7611解码芯片配置及采集

使用ADV7611解码输入的HDMI视频,适应板载ADV7611解码芯片的FPGA开发板;ADV7611解码芯片需要i2c配置才能使用,ADV7611解码芯片配置及采集这两部分均用verilog代码模块实现,代码中配置为1920x1080分辨率;代码位置如下:

代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:

视频数据组包

由于视频需要在GTH中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:

首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTH发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTH组包时根据固定的指令进行数据发送,GTH解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:

指令可以任意更改,但最低字节必须为bc;

UltraScale GTH 全网最细解读

关于UltraScale GTH介绍最详细的肯定是Xilinx官方的《ug576-ultrascale-gth-transceivers》,我们以此来解读:
《ug576-ultrascale-gth-transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Kirtex7-UltraScale-xcku060-ffva1156-2-i;UltraScale GTH的收发速度为 500 Mb/s 到 16.375 Gb/s 之间,比GTH高出3G;UltraScale GTH收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;
工程调用UltraScale GTH做aurora 8b/10b协议的数据编解码,代码位置如下:

UltraScale GTH基本配置如下:板载差分晶振125M,线速率配置为5G,协议类型被指为aurora 8b/10b;

UltraScale GTH 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为UltraScale GTH 收发器在Kintex7 UltraScale FPGA 芯片中的示意图:《ug576-ultrascale-gth-transceivers》第19页;

在 Ultrascale/Ultrascale+架构系列的 FPGA 中,GTH 高速收发器通常使用 Quad 来划分,一个 Quad 由四个GTHE3/4_CHANNEL 原语和一个 GTHE3/4_COMMON 原语组成。每个GTHE3/4_COMMON 中包含两个 LC-tank pll(QPLL0 和 QPLL1)。只有在应用程序中使用 QPLL 时,才需要实例化 GTHE3/4_COMMON。每个 GTHE3/4_CHANNEL 由一个 channel PLL(CPLL)、一个 transmitter,和一个 receiver 组成。一个参考时钟可以直接连接到一个 GTHE3/4_CHANNEL 原语,而不需要实例化 GTHE3/4_COMMON;

Ultrascale GTH 收发器的发送端和接收端功能是相互独立,都是由 Physical Media Attachment(物理媒介适配层 PMA)和Physical Coding Sublayer(物理编码子层 PCS)组成。PMA 内部集成了串并转换(PISO)、预加重、接收均衡、时钟发生器和时钟恢复等;PCS 内部集成了 8b/10b 编解码、弹性缓冲区、通道绑定和时钟修正等,每个 GTHE3/4_CHANNEL源语的逻辑电路如下图所示:《ug576-ultrascale-gth-transceivers》第20页;

这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

参考时钟的选择和分配

UltraScale 器件中的 GTH 收发器提供了不同的参考时钟输入选项。参考时钟选择架构支持 QPLL0、QLPLL1 和CPLL。从架构上讲,每个 Quad 包含四个 GTHE3/4_CHANNEL 原语,一个 GTHE3/4_COMMON 原语,两个专用的外部参考时钟引脚对,以及专用的参考时钟路由。如果使用到了高性能 QPLL,则必须实例化 GTHE3/4_COMMON,如下面 GTHE3/4_COMMON 时钟多路复用器结构的详细视图所示,(《ug576-ultrascale-gth-transceivers》第33页)在一个 Quad 中有 6 个参考时钟引脚对,两个本地参考时钟引脚对:GTREFCLK0或GTREFCLK1,两个参考时钟引脚对来自上面的两个Quads:GTSOUTHREFCLK0或 GTSOUTHREFCLK1,两个参考时钟引脚对来自下面的两个 Quads: GTNORTHREFCLK0 或GTNORTHREFCLK1。

UltraScale GTH 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

UltraScale GTH 发送接口

《ug576-ultrascale-gth-transceivers》的第104到179页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲UltraScale GTH例化时留给用户的发送部分需要用到的接口;

用户只需要关心发送接口的时钟和数据即可,UltraScale GTH例化模块的这部分接口如下:该文件名为gth_aurora_example_wrapper.v,例化IP后由官方自动生成;


在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
该文件名为gth_aurora_example_top.v;例化了官方的gth_aurora_example_wrapper.v;

UltraScale GTH 接收接口

《ug576-ultrascale-gth-transceivers》的第181到314页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲UltraScale GTH 例化时留给用户的发送部分需要用到的接口;

用户只需要关心发送接口的时钟和数据即可,UltraScale GTH例化模块的这部分接口如下:该文件名为gth_aurora_example_wrapper.v,例化IP后由官方自动生成;


在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
该文件名为gth_aurora_example_top.v;例化了官方的gth_aurora_example_wrapper.v;

UltraScale GTH IP核调用和使用


UltraScale GTH基本配置如下:板载差分晶振125M,线速率配置为5G,协议类型被指为aurora 8b/10b;

具体配置参考vivado工程,在IP配置好后,需要打开example工程,并将里面的文件复制出来作为自己的工程中使用,不过在我的工程中已经做好了这一步;打开example工程方法如下:

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:

我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:

UltraScale GTH解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;至此,数据进出GTX部分就已经讲完了,整个过程的框图我在代码中描述了,如下:
文件名为helai_GT_8b10b_video.v;

图像缓存

经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往
这里需要注意的是,FDMA需要配合控制器才能使用,本设计用到的控制器相比于之前的控制器做了代码修改,且没有封装为IP,这样做的目的是方便修改参数,详情请参考代码;位置如下:

XDMA及其中断模式的使用

本设计使用Xilinx官方的XDMA方案搭建基于Xilinx系列FPGA的PCIE通信平台,使用XDMA的中断模式与QT上位机通讯,即QT上位机通过软件中断的方式实现与FPGA的数据交互;XDMA将从SFP接收到的视频从DDR3中读取出来,通过PCIE总线发送给电脑主机,电脑主机运行QT上位机软件,QT软件通过通断方式接收PCIE发来的图像数据并实时显示图像;

本设计的关键在于我们编写了一个 XDMA中断模块。该模块用来配合驱动处理中断,xdma_inter.v 提供了AXI-LITE 接口,上位机通过访问 user 空间地址读写 xdma_inter.v 的寄存器。该 模块 在 user_irq_req_i 输入的中断位,寄存中断位号,并且输出给 XDMA IP ,当上位机的驱动响应中断的时候,在中断里面写 xdma_inter.v 的寄存器,清除已经处理的中断。DMA中断模块代码位置如下:

XDMA配置为X8模式,8G线速率,即PCIE3.0,如下:

关于基于XDMA的PCIE应用,请参考我的PCIE通信专栏,专栏地址:点击直接前往

QT上位机及其源码

QT上位机本方案使用 VS2015 + Qt 5.12.10 完成上位机开发软件环境搭建,QT程序调用XDMA官方API采用中断模式实现与FPGA的数据交互,本例程实现的是读写测速,提供QT上位机软件及其源码,路径如下:

QT源码部分截图如下:

4、vivado工程详解

开发板FPGA型号:Xilinx–Kirtex7-UltraScale-xcku060-ffva1156-2-i
开发环境:Vivado2022.2;
输入:HDMI或者动态彩条,分辨率1920x1080@60Hz;
输出:8B/10B回环用的是SFP光口的光纤;FPGA板卡与PC端用的是PCIE3.0总线;
应用:FPGA高端项目:图像采集+UltraScale GTH + PCIE,aurora 8b/10b编解码,PCIE视频传输;
工程Block Design如下:

工程代码架构如下:

综合编译完成后的FPGA资源消耗和功耗预估如下:

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;

3:如果你的vivado版本高于本工程vivado版本,解决如下:

打开工程后会发现IP都被锁住了,如下:

此时需要升级IP,操作如下:

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:



更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证

准备工作

FPGA开发板;
笔记本电脑,你的板子没有HDMI输入接口可以选择动态彩条;
SFP光口模块及光纤;
支持PCIE3.0的台式电脑;
连接光纤,板子上电,下载bit;
板子光纤接法如下:

静态演示

HDMI输入:当UltraScale GTH 运行5线速率时输出如下:

动态彩条输入:当UltraScale GTH 运行5G线速率时输出如下:

动态演示

录制了一个动态彩条输出的小视频,输出动态演示如下:

V7-GTH-COLOR

7、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:

0条评�?
全部评论

关于博主

an actually real engineer

通信工程专业毕业,7年开发经验

技术栈:

精通c/c++

精通golang

熟悉常见的脚本,js,lua,python,php

熟悉电路基础,嵌入式,单片机

耕耘领域:

服务端开发

嵌入式开发

git

>

gin接口代码CURD生成工具

sql ddl to struct and markdown,将sql表自动化生成代码内对应的结构体和markdown表格格式,节省宝贵的时间。

输入ddl:
输出代码:

qt .ui文件转css文件

duilib xml 自动生成绑定控件代码

协议调试器

基于lua虚拟机的的协议调试器软件 支持的协议有:

串口

tcp客户端/服务端

udp 组播/udp节点

tcp websocket 客户端/服务端

软件界面

使用例子: 通过脚本来获得接收到的数据并写入文件和展示在界面上

下载地址和源码

duilib版本源码 qt qml版本源码 二进制包

webrtc easy demo

webrtc c++ native 库 demo 实现功能:

基于QT

webrtc摄像头/桌面捕获功能

opengl渲染/多播放窗格管理

janus meeting room

下载地址和源码

源码 二进制包

wifi,蓝牙 - 无线开关

实现功能:

通过wifi/蓝牙实现远程开关电器或者其他电子设备

电路原理图:

实物图:

深度学习验证工具

vtk+pcl 点云编辑工具

实现功能:

1. 点云文件加载显示(.pcd obj stl)

2. 点云重建

3. 点云三角化

4. 点云缩放

下载地址:

源码 二进制包

虚拟示波器

硬件实物图:

实现原理

基本性能

采集频率: 取决于外部adc模块和ebaz4205矿板的以太网接口速率,最高可以达到100M/8 约为12.5MPS

上位机实现功能: 采集,显示波形,存储wave文件。

参数可运行时配置

上位机:

显示缓冲区大小可调

刷新率可调节

触发显示刷新可调节

进程守护工具

基本功能:

1. 守护进程,被守护程序崩溃后自动重启。

2. 进程输出获取,显示在编辑框中。

二进制包

openblt 烧录工具

基本功能:

1. 加载openblt 文件,下载到具有openblt bootloader 运行的单片机中。

二进制包

opencv 功能验证工具(开源项目二次开发)

基本功能:

1. 插件化图像处理流程,支持自定义图像处理流程。 2. 完善的日志和权限管理

二进制包

又一个modbus调试工具

最近混迹物联网企业,发现目前缺少一个简易可用的modbus调试工具,本软件旨在为开发者提供一个简单modbus测试工具。
主打一个代码简单易修改。
特点:

1. 基于QT5

2. 基于libmodbus

3. 三方库完全跨平台,linux/windows。

二进制包

屏幕录制工具

1. 基于QT5

2. 基于ffmpeg

3. 支持自定义录屏

源代码

开源plutosdr 板卡

1. 完全开源

2. 提高固件定制服务

3. 硬件售价450 手焊产量有线

测试数据

内部DDS回环测试

接收测试

外部发送500MHZ FM波形

硬件原理图

matlab测试

2TRX版本

大部分plutosdr应用场景都是讲plutosdr板卡作为射频收发器来使用。
实际上plutosdr板卡本身运行linux 操作系统。是具有一定脱机运算的能力。 对于一些微型频谱检测,简单射频信号收发等应用完全可以将应用层直接实现在板卡上
相较于通过网卡或者USB口传输具有更稳定,带宽更高等优点。
本开源板卡由于了SD卡启动,较原版pluto支持了自定义启动应用的功能。
提供了应用层开发SDK(编译器,buildroot文件系统)。
通过usb连接电脑,经过RNDIS驱动可以近似为通过网卡连接
(支持固件的开发定制)。

二次开发例子

``` all:
arm-linux-gnueabihf-gcc -mfloat-abi=hard --sysroot=/root/v0.32_2trx/buildroot/output/staging -std=gnu99 -g -o pluto_stream ad9361-iiostream.c -lpthread -liio -lm -Wall -Wextra -lrt
clean:
rm pluto_stream

bsdiff算法补丁生成器

1. 官方bsdiff算法例子自带bzip压缩方式

2. 本例子没有压缩,直接生成补丁文件

3. 图形化界面基于DUILIB

二进制文件

版面分析即分析出图片内的具体文件元素,如文档标题,文档内容,文档页码等,本工具基于cnstd模型

Base64 Image

. 闽ICP备19002644号