最新文�? 高薪文章--一文搞定电动四驱Simulink算法 万字长文---如何与女朋友讲BMS的“硬件”开发 深夜干货---女朋友如何学习BMS“硬件”设计第二季 深夜干货---如何教女朋友学习BMS的DV测试 前沿干货---基于AI的动力电池SOX算法介绍
原创 : FPGA GTP全网最细讲解 aurora 8b/10b协议OV5640摄像头视频传输 提供2套工程源码和技术支持 历史版本:
上次修改时间:

引用自

原创 : FPGA GTP全网最细讲解 aurora 8b/10b协议OV5640摄像头视频传输 提供2套工程源码和技术支持

FPGA GTP全网最细讲解 aurora 8b/10b协议OV5640摄像头视频传输 提供2套工程源码和技术支持

目录

1、前言

没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。

本文使用Xilinx的Artix7 FPGA的GTP资源做视频传输实验,视频源使用廉价的OV5640摄像头模组,调用GTP IP核,用verilog编写视频数据的编解码模块和数据对齐模块,使用开发板硬件上的2个SFP光口实现数据的收发;本博客提供2套vivado工程源码,2套工程的不同点在于使用1个SFP光口做收发还是两个2个SFP光口做收发;本博客详细描述了FPGA GTP 视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

3、GTP 全网最细解读

关于GTP介绍最详细的肯定是Xilinx官方的《ug482_7Series_GTP_Transceivers》,我们以此来解读:
《ug482_7Series_GTP_Transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Xilinx Artix7 xc7a35tfgg484-2;带有4路GTP资源,每通道的收发速度为 500 Mb/s 到 6.6 Gb/s 之间。GTP 收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

GTP 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTP 收发器在Artix-7 FPGA 芯片中的示意图:《ug482_7Series_GTP_Transceivers》第13页;

GTP 的具体内部逻辑框图如下所示,它由四个收发器通道 GTPE2_CHANNEL原语 和一个GTPE2_COMMON 原语 组成。每路 GTPE2_CHANNEL 包含发送电路 TX 和接收电路 RX;《ug482_7Series_GTP_Transceivers》第14页;

每个 GTPE2_CHANNEL 的逻辑电路如下图所示:《ug482_7Series_GTP_Transceivers》第15页;

GTPE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTP 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTP 的参考时钟

GTP 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTP模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 125Mhz 的 GTP 参考时钟连接到 MGTREFCLK0/1上,作为 GTP 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTPE2_COMMOM 的 PLL0 和 PLL1 中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTP 的参考时钟结构图如下:《ug482_7Series_GTP_Transceivers》第21页;

GTP 发送接口

《ug482_7Series_GTP_Transceivers》的第75到123页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;

用户只需要关心发送接口的时钟和数据即可,GTP例化模块的这部分接口如下:


在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:

GTP 接收接口

《ug482_7Series_GTP_Transceivers》的第125到213页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;

用户只需要关心接收接口的时钟和数据即可,GTP例化模块的这部分接口如下:


在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:

GTP IP核调用和使用


有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:

这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTP需要那么复杂么?

这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTP的范围是0.5到6.25G,由于我的项目是视频传输,所以在GTP的速率范围内均可,为了通用性,我在vivado工程中例化了5个GTP,速率分别为1G、2G、4G、5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是125M;
4:GTP组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug482_7Series_GTP_Transceivers》,官方将GTP资源分成了4组,名字分别为X0Y0、X0Y1、X0Y2、X0Y3,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTP组和引脚是怎么对应的呢?《ug482_7Series_GTP_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
我的板子原理图如下:


选择外部数据位宽32bit的8b/10b编解码,如下:

下面这里讲的是K码检测:

这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:

下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;

这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

4、设计思路框架

本博客提供2套vivado工程源码,2套工程的不同点在于使用1个SFP光口做收发还是两个2个SFP光口做收发;使用1个SFP光口做收发是用光纤连接SFP的RX和TX;使用2个SFP光口做收发是用光纤连接一个SFP的RX和另一个SFP的TX;设计思路框架分别如下:
使用2个SFP光口框图如下:

使用1个SFP光口框图如下:

OV5640摄像头配置及采集

OV5640摄像头需要i2c配置才能使用,需要将DVP接口的视频数据采集为RGB565或者RGB888格式的视频数据,这两部分均用verilog代码模块实现,代码位置如下:

其中摄像头配置为分辨率1280x720@60Hz,如下:

摄像头采集模块支持RGB565和RGB888格式的视频输出,可由参数配置,如下:

RGB_TYPE=0输出本RGB565格式;
RGB_TYPE=1输出本RGB888格式;
设计选择RGB565格式;

视频数据组包

由于视频需要在GTP中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:

首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTP发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTP组包时根据固定的指令进行数据发送,GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:

指令可以任意更改,但最低字节必须为bc;

GTP aurora 8b/10b

这个就是调用GTP做aurora 8b/10b协议的数据编解码,前面已经对GTP做了详细概述,这里不讲;代码位置如下:

需要注意的是,我一共调用了5个GTP,速率分别为1G、2G、4G、5G;代码中用一个参数选择速率,如下:

GTP_RATE=8’d1,GTP以1G线速率运行;
GTP_RATE=8’d2,GTP以2G线速率运行;
GTP_RATE=8’d4,GTP以4G线速率运行;
GTP_RATE=8’d5,GTP以5G线速率运行;
以我的测试来看,GTP以4G线速率运行时视频传输效果最佳;

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:

我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:

GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;
至此,数据进出GTP部分就已经讲完了,整个过程的框图我在代码中描述了,如下:

图像缓存

经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往

视频输出

视频从FDMA读出后,经过VGA时序模块和HDMI发送模块后输出显示器,代码位置如下:

VGA时序配置为1280X720,HDMI发送模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,关于这个模块,请参考我之前的博客,博客地址:点击直接前往

5、vivado工程1–>2路SFP传输

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:ov5640摄像头,分辨率1280x720@60Hz;
输出:HDMI显示器;
应用:2路SFP光口GTP aurora 8b/10b编解码视频传输;
工程Block Design如下:

工程代码架构如下:

综合编译完成后的FPGA资源消耗和功耗预估如下:

6、vivado工程2–>1路SFP传输

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:ov5640摄像头,分辨率1280x720@60Hz;
输出:HDMI显示器;
应用:1路SFP光口GTP aurora 8b/10b编解码视频传输;
工程Block Design如下:

工程代码架构如下:

综合编译完成后的FPGA资源消耗和功耗预估如下:

6、上板调试验证

光纤连接

工程1:2路SFP传输的光纤接法如下:

工程2:1路SFP传输的光纤接法如下:

静态演示

下面以工程1:2路SFP传输为例展示输出效果:
当GTP运行1G线速率时输出如下:

当GTP运行2G线速率时输出如下:

当GTP运行4G线速率时输出如下:

当GTP运行5G线速率时输出如下:

动态演示

经过我的认真对比发现,GTP运行4G线速率时,输出视频质量最高,下面展示GTP运行4G线速率时的短视频;

GTP_OV5640

7、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:

0条评�?
全部评论

关于博主

an actually real engineer

通信工程专业毕业,7年开发经验

技术栈:

精通c/c++

精通golang

熟悉常见的脚本,js,lua,python,php

熟悉电路基础,嵌入式,单片机

耕耘领域:

服务端开发

嵌入式开发

git

>

gin接口代码CURD生成工具

sql ddl to struct and markdown,将sql表自动化生成代码内对应的结构体和markdown表格格式,节省宝贵的时间。

输入ddl:
输出代码:

qt .ui文件转css文件

duilib xml 自动生成绑定控件代码

协议调试器

基于lua虚拟机的的协议调试器软件 支持的协议有:

串口

tcp客户端/服务端

udp 组播/udp节点

tcp websocket 客户端/服务端

软件界面

使用例子: 通过脚本来获得接收到的数据并写入文件和展示在界面上

下载地址和源码

duilib版本源码 qt qml版本源码 二进制包

webrtc easy demo

webrtc c++ native 库 demo 实现功能:

基于QT

webrtc摄像头/桌面捕获功能

opengl渲染/多播放窗格管理

janus meeting room

下载地址和源码

源码 二进制包

wifi,蓝牙 - 无线开关

实现功能:

通过wifi/蓝牙实现远程开关电器或者其他电子设备

电路原理图:

实物图:

深度学习验证工具

vtk+pcl 点云编辑工具

实现功能:

1. 点云文件加载显示(.pcd obj stl)

2. 点云重建

3. 点云三角化

4. 点云缩放

下载地址:

源码 二进制包

虚拟示波器

硬件实物图:

实现原理

基本性能

采集频率: 取决于外部adc模块和ebaz4205矿板的以太网接口速率,最高可以达到100M/8 约为12.5MPS

上位机实现功能: 采集,显示波形,存储wave文件。

参数可运行时配置

上位机:

显示缓冲区大小可调

刷新率可调节

触发显示刷新可调节

进程守护工具

基本功能:

1. 守护进程,被守护程序崩溃后自动重启。

2. 进程输出获取,显示在编辑框中。

二进制包

openblt 烧录工具

基本功能:

1. 加载openblt 文件,下载到具有openblt bootloader 运行的单片机中。

二进制包

opencv 功能验证工具(开源项目二次开发)

基本功能:

1. 插件化图像处理流程,支持自定义图像处理流程。 2. 完善的日志和权限管理

二进制包

又一个modbus调试工具

最近混迹物联网企业,发现目前缺少一个简易可用的modbus调试工具,本软件旨在为开发者提供一个简单modbus测试工具。
主打一个代码简单易修改。
特点:

1. 基于QT5

2. 基于libmodbus

3. 三方库完全跨平台,linux/windows。

二进制包

屏幕录制工具

1. 基于QT5

2. 基于ffmpeg

3. 支持自定义录屏

源代码

开源plutosdr 板卡

1. 完全开源

2. 提高固件定制服务

3. 硬件售价450 手焊产量有线

测试数据

内部DDS回环测试

接收测试

外部发送500MHZ FM波形

硬件原理图

matlab测试

2TRX版本

大部分plutosdr应用场景都是讲plutosdr板卡作为射频收发器来使用。
实际上plutosdr板卡本身运行linux 操作系统。是具有一定脱机运算的能力。 对于一些微型频谱检测,简单射频信号收发等应用完全可以将应用层直接实现在板卡上
相较于通过网卡或者USB口传输具有更稳定,带宽更高等优点。
本开源板卡由于了SD卡启动,较原版pluto支持了自定义启动应用的功能。
提供了应用层开发SDK(编译器,buildroot文件系统)。
通过usb连接电脑,经过RNDIS驱动可以近似为通过网卡连接
(支持固件的开发定制)。

二次开发例子

``` all:
arm-linux-gnueabihf-gcc -mfloat-abi=hard --sysroot=/root/v0.32_2trx/buildroot/output/staging -std=gnu99 -g -o pluto_stream ad9361-iiostream.c -lpthread -liio -lm -Wall -Wextra -lrt
clean:
rm pluto_stream

bsdiff算法补丁生成器

1. 官方bsdiff算法例子自带bzip压缩方式

2. 本例子没有压缩,直接生成补丁文件

3. 图形化界面基于DUILIB

二进制文件

版面分析即分析出图片内的具体文件元素,如文档标题,文档内容,文档页码等,本工具基于cnstd模型

Base64 Image

. 闽ICP备19002644号